A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Epidemic transmission modeling with fractional derivatives and environmental pathogens




TekijätKhalighi, Moein; Ndaïrou, Faïçal; Lahti, Leo

KustantajaWORLD SCIENTIFIC PUBL CO PTE LTD

KustannuspaikkaSINGAPORE

Julkaisuvuosi2024

JournalInternational Journal of Biomathematics

Tietokannassa oleva lehden nimiINTERNATIONAL JOURNAL OF BIOMATHEMATICS

Lehden akronyymiINT J BIOMATH

Sivujen määrä28

ISSN1793-5245

eISSN1793-7159

DOIhttps://doi.org/10.1142/S1793524524500852

Verkko-osoitehttps://www.worldscientific.com/doi/10.1142/S1793524524500852

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457935376


Tiivistelmä
This research presents an advanced fractional-order compartmental model designed to delve into the complexities of COVID-19 transmission dynamics, specifically accounting for the influence of environmental pathogens on disease spread. By enhancing the classical compartmental framework, our model distinctively incorporates the effects of order derivatives and environmental shedding mechanisms on the basic reproduction numbers, thus offering a holistic perspective on transmission dynamics. Leveraging fractional calculus, the model adeptly captures the memory effect associated with disease spread, providing an authentic depiction of the virus's real-world propagation patterns. A thorough mathematical analysis confirming the existence, uniqueness and stability of the model's solutions emphasizes its robustness. Furthermore, the numerical simulations, meticulously calibrated with real COVID-19 case data, affirm the model's capacity to emulate observed transmission trends, demonstrating the pivotal role of environmental transmission vectors in shaping public health strategies. The study highlights the critical role of environmental sanitation and targeted interventions in controlling the pandemic's spread, suggesting new insights for research and policy-making in infectious disease management.


Julkaisussa olevat rahoitustiedot
This study has been supported by the Academy of Finland (330887 to MK, LL), the European Unions Horizon 2020 research and innovation program (952914 to LL), and the UTUGS graduate school of the University of Turku (to MK).


Last updated on 2025-13-02 at 10:07