A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Does Differentially Private Synthetic Data Lead to Synthetic Discoveries?
Tekijät: Montoya Perez, Ileana; Movahedi, Parisa; Nieminen, Valtteri; Airola, Antti; Pahikkala, Tapio
Kustantaja: Georg Thieme Verlag
Julkaisuvuosi: 2024
Journal: Methods of Information in Medicine
Vuosikerta: 63
Numero: 1-2
Aloitussivu: 35
Lopetussivu: 51
eISSN: 2511-705X
DOI: https://doi.org/10.1055/a-2385-1355
Verkko-osoite: https://doi.org/10.1055/a-2385-1355
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457851720
Background Synthetic data have been proposed as a solution for sharing anonymized versions of sensitive biomedical datasets. Ideally, synthetic data should preserve the structure and statistical properties of the original data, while protecting the privacy of the individual subjects. Differential Privacy (DP) is currently considered the gold standard approach for balancing this trade-off.
Objectives The aim of this study is to investigate how trustworthy are group differences discovered by independent sample tests from DP-synthetic data. The evaluation is carried out in terms of the tests' Type I and Type II errors. With the former, we can quantify the tests' validity, i.e., whether the probability of false discoveries is indeed below the significance level, and the latter indicates the tests' power in making real discoveries.
Methods We evaluate the Mann–Whitney U test, Student's t-test, chi-squared test, and median test on DP-synthetic data. The private synthetic datasets are generated from real-world data, including a prostate cancer dataset (n = 500) and a cardiovascular dataset (n = 70,000), as well as on bivariate and multivariate simulated data. Five different DP-synthetic data generation methods are evaluated, including two basic DP histogram release methods and MWEM, Private-PGM, and DP GAN algorithms.
Conclusion A large portion of the evaluation results expressed dramatically inflated Type I errors, especially at levels of ϵ ≤ 1. This result calls for caution when releasing and analyzing DP-synthetic data: low p-values may be obtained in statistical tests simply as a byproduct of the noise added to protect privacy. A DP Smoothed Histogram-based synthetic data generation method was shown to produce valid Type I error for all privacy levels tested but required a large original dataset size and a modest privacy budget (ϵ ≥ 5) in order to have reasonable Type II error levels.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This work has received funding from Business Finland (grant number 37428/31/2020) and European Union's Horizon Europe research and innovation programme (grant number 101095384). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.