A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Building shape-focused pharmacophore models for effective docking screening




TekijätMoyano-Gómez, Paola; Lehtonen, Jukka V.; Pentikäinen, Olli T.; Postila, Pekka A.

KustantajaBioMed Central

Julkaisuvuosi2024

JournalJournal of cheminformatics

Tietokannassa oleva lehden nimiJournal of cheminformatics

Lehden akronyymiJ Cheminform

Artikkelin numero97

Vuosikerta16

Numero1

eISSN1758-2946

DOIhttps://doi.org/10.1186/s13321-024-00857-6

Verkko-osoitehttps://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00857-6

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457542365


Tiivistelmä
The performance of molecular docking can be improved by comparing the shape similarity of the flexibly sampled poses against the target proteins' inverted binding cavities. The effectiveness of these pseudo-ligands or negative image-based models in docking rescoring is boosted further by performing enrichment-driven optimization. Here, we introduce a novel shape-focused pharmacophore modeling algorithm O-LAP that generates a new class of cavity-filling models by clumping together overlapping atomic content via pairwise distance graph clustering. Top-ranked poses of flexibly docked active ligands were used as the modeling input and multiple alternative clustering settings were benchmark-tested thoroughly with five demanding drug targets using random training/test divisions. In docking rescoring, the O-LAP modeling typically improved massively on the default docking enrichment; furthermore, the results indicate that the clustered models work well in rigid docking. The C+ +/Qt5-based algorithm O-LAP is released under the GNU General Public License v3.0 via GitHub ( https://github.com/jvlehtonen/overlap-toolkit ). SCIENTIFIC CONTRIBUTION: This study introduces O-LAP, a C++/Qt5-based graph clustering software for generating new type of shape-focused pharmacophore models. In the O-LAP modeling, the target protein cavity is filled with flexibly docked active ligands, the overlapping ligand atoms are clustered, and the shape/electrostatic potential of the resulting model is compared against the flexibly sampled molecular docking poses. The O-LAP modeling is shown to ensure high enrichment in both docking rescoring and rigid docking based on comprehensive benchmark-testing.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This research was funded by Novo Nordisk Foundation (O.T.P., Pioneer Innovator (0068926) and Distinguished Innovator (0075825) Grants). This research was also supported by the Research Council of Finland’s Flagship InFLAMES (P.A.P). The funding decision numbers are 337530 and 357910.


Last updated on 2025-11-04 at 13:55