A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Collinearity of points on Poincaré unit disk and Riemann sphere




TekijätFujimura, Masayo; Rainio, Oona; Vuorinen, Matti

KustantajaInstitute of Mathematics, University of Debrecen

Julkaisuvuosi2024

JournalPublicationes Mathematicae Debrecen

Tietokannassa oleva lehden nimiPublicationes Mathematicae Debrecen

Vuosikerta105

Numero1-2

Aloitussivu141

Lopetussivu169

ISSN0033-3883

eISSN2064 - 2849

DOIhttps://doi.org/10.5486/PMD.2024.9763

Verkko-osoitehttps://doi.org/10.5486/PMD.2024.9763

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/2212.09037

Preprintin osoitehttps://arxiv.org/abs/2212.09037v1


Tiivistelmä
We study certain points significant for the hyperbolic geometry of the unit disk. We give explicit formulas for the intersection points of the Euclidean lines and the stereographic projections of great circles of the Riemann sphere passing through these points. We prove several results related to collinearity of these intersection points, offer new ways to find the hyperbolic midpoint, and represent a formula for the chordal midpoint. The proofs utilize Gröbner bases from computer algebra for the solution of polynomial equations.


Julkaisussa olevat rahoitustiedot
The first author was partially supported by JSPS KAKENHI (Grant No. JP19K03531), and the second author was supported by Finnish Culture Foundation and Magnus Ehrnrooth Foundation.


Last updated on 2025-03-04 at 13:57