A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Optimal Local Identifying and Local Locating-dominating Codes




TekijätHerva, Pyry; Laihonen, Tero; Lehtilä, Tuomo

KustantajaIOS Press BV

Julkaisuvuosi2024

JournalFundamenta Informaticae

Tietokannassa oleva lehden nimiFundamenta Informaticae

Vuosikerta191

Numero3-4

Aloitussivu351

Lopetussivu378

eISSN1875-8681

DOIhttps://doi.org/10.3233/FI-242187

Verkko-osoitehttps://doi.org/10.3233/FI-242187

Rinnakkaistallenteen osoitehttps://arxiv.org/pdf/2302.13351

Preprintin osoitehttps://arxiv.org/abs/2302.13351


Tiivistelmä
We introduce two new classes of covering codes in graphs for every positive integer r. These new codes are called local r-identifying and local r-locating-dominating codes and they are derived from r-identifying and r-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small n optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid and the king grid. We prove that seven out of eight of our constructions have optimal densities.


Julkaisussa olevat rahoitustiedot
Research supported by the Emil Aaltonen Foundation. Research supported by the Academy of Finland grant 338797.


Last updated on 2025-27-01 at 20:00