A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Joint Selective State Space Model and Detrending for Robust Time Series Anomaly Detection




TekijätChen, Junqi; Tan, Xu; Rahardja, Sylwan; Yang, Jiawei; Rahardja, Susanto

KustantajaIEEE

Julkaisuvuosi2024

JournalIEEE Signal Processing Letters

Tietokannassa oleva lehden nimiIEEE Signal Processing Letters

Vuosikerta31

Aloitussivu2050

Lopetussivu2054

ISSN1070-9908

eISSN1558-2361

DOIhttps://doi.org/10.1109/LSP.2024.3438078

Verkko-osoitehttps://ieeexplore.ieee.org/document/10623192

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457456567

Preprintin osoitehttps://arxiv.org/abs/2405.19823


Tiivistelmä

Deep learning-based sequence models are extensively employed in Time Series Anomaly Detection (TSAD) tasks due to their effective sequential modeling capabilities. However, the ability of TSAD is limited by two key challenges: (i) the ability to model long-range dependency and (ii) the generalization issue in the presence of non-stationary data. To tackle these challenges, an anomaly detector that leverages the selective state space model known for its proficiency in capturing long-term dependencies across various domains is proposed. Additionally, a multi-stage detrending mechanism is introduced to mitigate the prominent trend component in non-stationary data to address the generalization issue. Extensive experiments conducted on real world public datasets demonstrate that the proposed methods surpass all 12 compared baseline methods.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-01 at 19:22