A1 Refereed original research article in a scientific journal

Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime




AuthorsDutta, Arpan; Tiainen, Ville; Sokolovskii, Ilia; Duarte, Luís; Markešević, Nemanja; Morozov, Dmitry; Qureshi, Hassan A.; Pikker, Siim; Groenhof, Gerrit; Toppari, J. Jussi

PublisherSpringer Nature

Publication year2024

JournalNature Communications

Journal name in sourceNature communications

Journal acronymNat Commun

Article number6600

Volume15

Issue1

eISSN2041-1723

DOIhttps://doi.org/10.1038/s41467-024-50532-5

Web address https://www.nature.com/articles/s41467-024-50532-5

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/457448705


Abstract
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Funding information in the publication
This work was supported by the Academy of Finland via Research projects (Grants Nos. 323996 and 332743 to G.G., Nos. 323995, 289947 and 350797 to J.J.T.) and University profiling funding (Profi4 to University of Jyväskylä), with contributions from the Finnish Cultural Foundation (Grant No. 00231164 to J.J.T. and G.G.) and the Estonian Research Council (Grant No. PSG406 to S.P.). We also thank the Center for Scientific Computing (CSC-IT Center for Science) for generous computational resources for G.G.


Last updated on 2025-27-01 at 19:13