A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Mass Equidistribution for Saito-Kurokawa Lifts
Tekijät: Jääsaari, Jesse; Lester, Stephen; Saha, Abhishek
Kustantaja: Springer Nature
Julkaisuvuosi: 2024
Journal: Geometric And Functional Analysis
Tietokannassa oleva lehden nimi: Geometric and Functional Analysis
Vuosikerta: 34
Numero: 5
Aloitussivu: 1460
Lopetussivu: 1532
ISSN: 1016-443X
eISSN: 1420-8970
DOI: https://doi.org/10.1007/s00039-024-00690-x
Verkko-osoite: https://link.springer.com/article/10.1007/s00039-024-00690-x
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457359572
Let F be a holomorphic cuspidal Hecke eigenform for of weight k that is a Saito–Kurokawa lift. Assuming the Generalized Riemann Hypothesis (GRH), we prove that the mass of F equidistributes on the Siegel modular variety as k⟶∞. As a corollary, we show under GRH that the zero divisors of Saito–Kurokawa lifts equidistribute as their weights tend to infinity.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/T028343/1].