A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Mass Equidistribution for Saito-Kurokawa Lifts




TekijätJääsaari, Jesse; Lester, Stephen; Saha, Abhishek

KustantajaSpringer Nature

Julkaisuvuosi2024

JournalGeometric And Functional Analysis

Tietokannassa oleva lehden nimiGeometric and Functional Analysis

Vuosikerta34

Numero5

Aloitussivu1460

Lopetussivu1532

ISSN1016-443X

eISSN1420-8970

DOIhttps://doi.org/10.1007/s00039-024-00690-x

Verkko-osoitehttps://link.springer.com/article/10.1007/s00039-024-00690-x

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457359572


Tiivistelmä
Let F be a holomorphic cuspidal Hecke eigenform for of weight k that is a Saito–Kurokawa lift. Assuming the Generalized Riemann Hypothesis (GRH), we prove that the mass of F equidistributes on the Siegel modular variety as k⟶∞. As a corollary, we show under GRH that the zero divisors of Saito–Kurokawa lifts equidistribute as their weights tend to infinity.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/T028343/1].


Last updated on 2025-28-02 at 10:19