A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Construction of Reverse Type-II InP/ZnxCd1–xS Core/Shell Quantum Dots with Low Interface Strain to Enhance Photocatalytic Hydrogen Evolution




TekijätXu, Dongzi; Shen, Li-Lei; Qin, Zhi-Kai; Yan, Shuo; Wang, Nianxing; Wang, Jingui; Gao, Yu-Ji

KustantajaAmerican Chemical Society

Julkaisuvuosi2024

JournalInorganic Chemistry

Vuosikerta63

Numero27

Aloitussivu12582

Lopetussivu12592

eISSN1520-510X

DOIhttps://doi.org/10.1021/acs.inorgchem.4c01503

Verkko-osoitehttps://pubs.acs.org/doi/full/10.1021/acs.inorgchem.4c01503

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457346322


Tiivistelmä

The InP-based quantum dots (QDs) have attracted much attention in the field of photocatalytic H2 evolution. However, a shell should be used for InP-based photocatalytic systems to passivate the numerous surface defects. Different from the traditional InP-based core/shell QDs with Type-I or Type-II band alignment, herein, the "reverse Type-II" core/shell QDs in which both the conduction and valence bands of shell materials are more negative than those of core materials have been well-designed by regulating the ratio of Cd/Zn of the alloyed ZnxCd1-xS shell. The reverse Type-II band alignment would realize the spatial separation of photogenerated carriers. More importantly, the photogenerated holes tend to rest on the shell in the reverse Type-II QDs, which facilitate hole transfer to the surface, the rate-determining step for solar H2 evolution using QDs. Therefore, the obtained InP/Zn0.25Cd0.75S core/shell QDs exhibit superior photocatalytic activity and stability under visible light irradiation. The rate of solar H2 evolution reaches 376.19 μmol h-1 mg-1 at the initial 46 h, with a turnover number of ∼2,157,000 per QD within 70 h irradiation.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-24-06 at 08:35