A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Progress towards the two-thirds conjecture on locating-total dominating sets




TekijätChakraborty, Dipayan; Foucaud, Florent; Hakanen, Anni; Henning, Michael A.; Wagler, Annegret K.

KustantajaElsevier

Julkaisuvuosi2024

JournalDiscrete Mathematics

Tietokannassa oleva lehden nimiDiscrete Mathematics

Artikkelin numero114176

Vuosikerta347

Numero12

ISSN0012-365X

eISSN1872-681X

DOIhttps://doi.org/10.1016/j.disc.2024.114176

Verkko-osoitehttps://doi.org/10.1016/j.disc.2024.114176

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457313437

Preprintin osoitehttps://arxiv.org/abs/2211.14178


Tiivistelmä
We study upper bounds on the size of optimum locating-total dominating sets in graphs. A set S of vertices of a graph G is a locating-total dominating set if every vertex of G has a neighbor in S, and if any two vertices outside S have distinct neighborhoods within S. The smallest size of such a set is denoted by γtL(G). It has been conjectured that γtL(G)≤2n3 holds for every twin-free graph G of order n without isolated vertices. We prove that the conjecture holds for cobipartite graphs, split graphs, block graphs and subcubic graphs.



Last updated on 2025-27-01 at 19:02