A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Euclid preparation: XLI. Galaxy power spectrum modelling in real space




TekijätEuclid Collaboration; Pezzotta, A.; Moretti, C.; Zennaro, M.; Moradinezhad Dizgah, A.; Crocce, M.; Sefusatti, E.; Ferrero, I.; Pardede, K.; Eggemeier, A.; Barreira, A.; Angulo, R. E.; Marinucci, M.; Camacho Quevedo, B.; de la Torre, S.; Alkhanishvili, D.; Biagetti, M.; Breton, M.-A.; Castorina, E.; D’Amico, G.; Desjacques, V.; Guidi, M.; Kärcher, M.; Oddo, A.; Pellejero Ibanez, M.; Porciani, C.; Pugno, A.; Salvalaggio, J.; Sarpa, E.; Veropalumbo, A.; Vlah, Z.; Amara, A.; Andreon, S.; Auricchio, N.; Baldi, M.; Bardelli, S.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Cardone, V. F.; Carretero, J.; Casas, S.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; Di Giorgio, A. M.; Dinis, J.; Dupac, X.; Dusini, S.; Ealet, A.; Farina, M.; Farrens, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Gillis, B.; Giocoli, C.; Granett, B. R.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Joachimi, B.; Keihänen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mellier, Y.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S.-M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.; Pollack, J. E.; Poncet, M.; Popa, L. A.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sapone, D.; Sartoris, B.; Schneider, P.; Schrabback, T.; Secroun, A.; Seidel, G.; Seiffert, M.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Surace, C.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Zucca, E.; Biviano, A.; Bozzo, E.; Burigana, C.; Colodro-Conde, C.; Di Ferdinando, D.; Mainetti, G.; Martinelli, M.; Mauri, N.; Sakr, Z.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Allevato, V.; Anselmi, S.; Baccigalupi, C.; Ballardini, M.; Bernardeau, F.; Blanchard, A.; Borgani, S.; Bruton, S.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Castignani, G.; Castro, T.; Cañas-Herrera, G.; Chambers, K. C.; Contarini, S.; Cooray, A. R.; Coupon, J.; Davini, S.; De Lucia, G.; Desprez, G.; Di Domizio, S.; Dole, H.; Díaz-Sánchez, A.; Escartin Vigo, J. A.; Escoffier, S.; Ferreira, P. G.; Finelli, F.; Gabarra, L.; Ganga, K.; García-Bellido, J.; Giacomini, F.; Gozaliasl, G.; Hall, A.; Ilić, S.; Joudaki, S.; Kajava, J. J. E.; Kansal, V.; Kirkpatrick, C. C.; Legrand, L.; Loureiro, A.; Macias-Perez, J.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martins, C. J. A. P.; Matthew, S.; Maurin, L.; Metcalf, R. B.; Migliaccio, M.; Monaco, P.; Morgante, G.; Nadathur, S.; Walton, Nicholas A.; Patrizii, L.; Popa, V.; Potter, D.; Pourtsidou, A.; Pöntinen, M.; Risso, I.; Rocci, P.-F.; Sahlén, M.; Sánchez, A. G.; Schneider, A.; Sereno, M.; Simon, P.; Spurio Mancini, A.; Steinwagner, J.; Testera, G.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valiviita, J.; Vergani, D.; Verza, G.; Vielzeuf, P.

KustantajaEDP Sciences

Julkaisuvuosi2024

JournalAstronomy and Astrophysics

Tietokannassa oleva lehden nimiAstronomy & Astrophysics

Artikkelin numeroA216

Vuosikerta687

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202348939

Verkko-osoitehttp://dx.doi.org/10.1051/0004-6361/202348939

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457265193


Tiivistelmä

We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with Hα galaxies leading to catalogues of millions of objects within a volume of about 58 h−3 Gpc3. Our analysis suggests that both models can be used to provide a robust inference of the parameters (h, ωc) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion – which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution – can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of kmax = 0.45 h Mpc−1, and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, ωc) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid, Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). The majority of the analysis carried out in this manuscript has been produced by a joint effort among several Euclid members and work centers. A special acknowledgement goes to the Max Planck Computing and Data Facility (MPCDF) in Garching (Germany), where most of the results presented in this article have been obtained. We acknowledge the hospitality of the Institute for Fundamental Physics of the Universe (IFPU) of Trieste for the group meeting held there in November 2022. C.M.’s research for this project was supported by a UK Research and Innovation Future Leaders Fellowship [grant MR/S016066/2]. C.M.’s work is supported by the Fondazione ICSC, Spoke 3 Astrophysics and Cosmos Observations, National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) Project ID CN_00000013 “Italian Research Center on High-Performance Computing, Big Data and Quantum Computing” funded by MUR Missione 4 Componente 2 Investimento 1.4: Potenziamento strutture di ricerca e creazione di “campioni nazionali di R&S (M4C2-19 )” – Next Generation EU (NGEU). A.E. is supported at the Argelander Institut für Astronomie by an Argelander Fellowship. A.B. acknowledges support from the Excellence Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2094-390783311. R.E.A. acknowledges the support of the ERC-StG number 716151 (BACCO), and the project PID2021-128338NB-I00 from the Spanish Ministry of Science. M.B. is supported by the Programma Nazionale della Ricerca (PNR) grant J95F21002830001 with title “FAIR-by-design”. M.K. is funded by the Excellence Initiative of Aix-Marseille University – A*MIDEX, a French “Investissements d’Avenir” programme (AMX-19-IET-008 – IPhU). This research made use of matplotlib, a Python library for publication quality graphics (Hunter 2007).


Last updated on 2025-27-01 at 19:49