A1 Refereed original research article in a scientific journal
Euclid preparation: XXXIX. The effect of baryons on the halo mass function
Authors: Castro T., Borgani S., Costanzi M., Dakin J., Dolag K., Fumagalli A., Ragagnin A., Saro A., Le Brun A.M.C., Aghanim N., Amara A., Andreon S., Auricchio N., Baldi M., Bardelli S., Bodendorf C., Bonino D., Branchini E., Brescia M., Brinchmann J., Camera S., Capobianco V., Carbone C., Carretero J., Casas S., Castellano M., Cavuoti S., Cimatti A., Congedo G., Conselice C.J., Conversi L., Copin Y., Corcione L., Courbin F., Courtois H.M., Cropper M., Da Silva A., Degaudenzi H., Di Giorgio A.M., Dinis J., Dubath F., Duncan C.A.J., Dupac X., Farina M., Farrens S., Ferriol S., Frailis M., Franceschi E., Fumana M., Galeotta S., Gillis B., Giocoli C., Grazian A., Grupp F., Haugan S.V.H., Holmes W., Hormuth F., Hornstrup A., Jahnke K., Keihänen E., Kermiche S., Kiessling A., Kilbinger M., Kubik B., Kunz M., Kurki-Suonio H., Ligori S., Lilje P.B., Lindholm V., Lloro I., Maiorano E., Mansutti O., Marggraf O., Markovic K., Martinet N., Marulli F., Massey R., Maurogordato S., Medinaceli E., Meneghetti M., Merlin E., Meylan G., Moresco M., Moscardini L., Munari E., Niemi S.M., Padilla C., Paltani S., Pasian F., Pettorino V., Pires S., Polenta G., Poncet M., Popa L.A., Pozzetti L., Raison F., Rebolo R., Renzi A., Rhodes J., Riccio G., Romelli E., Roncarelli M., Saglia R., Sapone D., Sartoris B., Schneider P., Schrabback T., Secroun A., Seidel G., Serrano S., Sirignano C., Sirri G., Stanco L., Starck J.L., Tallada-Crespí P., Taylor A.N., Tereno I., Toledo-Moreo R., Torradeflot F., Tutusaus I., Valentijn E.A., Valenziano L., Vassallo T., Veropalumbo A., Wang Y., Weller J., Zacchei A., Zamorani G., Zoubian J., Zucca E., Biviano A., Bozzo E., Cerna C., Colodro-Conde C., Di Ferdinando D., Mauri N., Neissner C., Sakr Z., Scottez V., Tenti M., Viel M., Wiesmann M., Akrami Y., Anselmi S., Baccigalupi C., Ballardini M., Borlaff A.S., Bruton S., Burigana C., Cabanac R., Cappi A., Carvalho C.S., Castignani G., Cañas-Herrera G., Chambers K.C., Cooray A.R., Coupon J., Cucciati O., Díaz-Sánchez A., Davini S., De La Torre S., De Lucia G., Desprez G., Di Domizio S., Dole H., Escoffier S., Ferrero I., Finelli F., Gabarra L., Ganga K., Garcia-Bellido J., Giacomini F., Gozaliasl G., Hildebrandt H., Ilić S., Jimanez Munñoz A., Kajava Jari, Kansal V., Kirkpatrick C.C., Legrand L., Loureiro A., MacIas-Perez J., Magliocchetti M., Mainetti G., Maoli R., Martinelli M., Martins C.J.A.P., Matthew S., Maturi M., Maurin L., Metcalf R.B., Migliaccio M., Monaco P., Morgante G., Nadathur S., Patrizii L., Pezzotta A., Popa V., Porciani C., Potter D., Pöntinen M., Reimberg P., Rocci P.F., Sánchez A.G., Schaye J., Schneider A., Sefusatti E., Sereno M., Simon P., Spurio Mancini A., Stadel J., Stanford S.A., Steinwagner J., Testera G., Tewes M., Teyssier R., Toft S., Tosi S., Troja A., Tucci M., Valiviita J., Vergani D.
Publisher: EDP Sciences
Publication year: 2024
Journal: Astronomy and Astrophysics
Journal name in source: Astronomy and Astrophysics
Article number: A109
Volume: 685
eISSN: 0004-6361
DOI: https://doi.org/10.1051/0004-6361/202348388
Web address : https://doi.org/10.1051/0004-6361/202348388
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/457252837
The Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being subdominant to dark matter and dark energy, the baryonic component of our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model that can be used to precisely quantify the impact of baryons on the virial halo masses of galaxy clusters using the baryon fraction within a cluster as a proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters, which are calibrated using non-radiative cosmological hydrodynamical simulations, and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable 1% relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against variation of the numerical implementation of the subresolution physical processes included in the simulations. Our work substantiates previous claims regarding the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model arising from baryonic corrections to cluster masses are subdominant when compared to the precision with which mass-observable (i.e. richness) relations will be calibrated using Euclid and to our current understanding of the baryon fraction within galaxy clusters.
Downloadable publication This is an electronic reprint of the original article. |
Funding information in the publication:
TC, SB, AS and AF are supported by the INFN INDARK PD51 grant. TC, SB and AS are supported by the Fondazione ICSC National Recovery and Resilience Plan (PNRR) Project ID CN-00000013 “Italian Research Center on High-Performance Computing, Big Data and Quantum Computing” funded by MUR Missione 4 Componente 2 Investimento 1.4: “Potenziamento strutture di ricerca e creazione di “campioni nazionali” di R & S (M4C2-19)” – Next Generation EU (NGEU). TC and AS are also supported by the FARE MIUR grant ‘ClustersXEuclid’ R165SBKTMA. AS is also supported by the ERC ‘ClustersXCosmo’ grant agreement 716762. KD acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2094 – 390783311 as well as support through the COMPLEX project from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program grant agreement ERC-2019-AdG 882679. AR is supported by the PRIN-MIUR 2017 WSCC32 ZOOMING grant. We acknowledge the computing centre of CINECA and INAF, under the coordination of the “Accordo Quadro (MoU) per lo svolgimento di attività congiunta di ricerca Nuove frontiere in Astrofisica: HPC e Data Exploration di nuova generazione”, for the availability of computing resources and support. AF acknowledges support from Brookhaven National Laboratory. We acknowledge the use of the HOTCAT computing infrastructure of the Astronomical Observatory of Trieste – National Institute for Astrophysics (INAF, Italy) (see, Bertocco et al. 2020; Taffoni et al. 2020). The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org).