A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Validating multi-sensor object tracking in Heavy-Duty Trucks with extended trailer dynamics for road traffic situations
Tekijät: Adu-Kyere, Akwasi; Nigussie, Ethiopia; Isoaho, Jouni; Ronkainen, Jukka; Kyytinen, Arto
Toimittaja: Shakshuki, Elhadi
Konferenssin vakiintunut nimi: International Conference on Ambient Systems, Networks and Technologies Networks
Julkaisuvuosi: 2024
Journal: Procedia Computer Science
Kokoomateoksen nimi: The 15th International Conference on Ambient Systems, Networks and Technologies Networks (ANT) / The 7th International Conference on Emerging Data and Industry 4.0 (EDI40), April 23-25, 2024, Hasselt University, Belgium
Tietokannassa oleva lehden nimi: Procedia Computer Science
Vuosikerta: 238
Aloitussivu: 167
Lopetussivu: 174
eISSN: 1877-0509
DOI: https://doi.org/10.1016/j.procs.2024.06.012
Verkko-osoite: https://doi.org/10.1016/j.procs.2024.06.012
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457187506
Multi-sensing technologies in vehicles have the potential to improve road and pedestrian safety. Freighting trucks with extended trailer face challenges in urban maneuvering due to limited visibility. In this paper, we evaluate and validate extended trailer dynamics for Heavy-Duty Trucks in road traffic situations with multi-sensor object tracking emphasizing trailer dynamics, back-end parameters, and characteristics that influence decision-making strategies. A custom in-vehicle compute unit, in combination with the onboard truck’s computer, facilitated this research.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This research was performed within the “Programmable Systems for Intelligence in Auto- mobiles” (PRYSTINE) project. PRYSTINE has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programme and National Authorities, under Grant No. 783190.