A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Comparison of thresholds for a convolutional neural network classifying medical images
Tekijät: Rainio, Oona; Tamminen, Jonne; Venäläinen, Mikko S.; Liedes, Joonas; Knuuti, Juhani; Kemppainen, Jukka; Klén, Riku
Kustantaja: Springer Nature
Kustannuspaikka: LONDON
Julkaisuvuosi: 2024
Journal: International journal of data science and analytics
Tietokannassa oleva lehden nimi: INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Lehden akronyymi: INT J DATA SCI ANAL
Sivujen määrä: 7
ISSN: 2364-415X
eISSN: 2364-4168
DOI: https://doi.org/10.1007/s41060-024-00584-z
Verkko-osoite: https://doi.org/10.1007/s41060-024-00584-z
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457176999
Our aim is to compare different thresholds for a convolutional neural network (CNN) designed for binary classification of medical images. We consider six different thresholds, including the default threshold of 0.5, Youden's threshold, the point on the ROC curve closest to the point (0,1), the threshold of equal sensitivity and specificity, and two sensitivity-weighted thresholds. We test these thresholds on the predictions of a CNN with InceptionV3 architecture computed from five datasets consisting of medical images of different modalities related to either cancer or lung infections. The classifications of each threshold are evaluated by considering their accuracy, sensitivity, specificity, F1 score, and net benefit. According to our results, the best thresholds are Youden's threshold, the point on the ROC curve closest to the point (0,1), and the threshold of equal sensitivity and specificity, all of which work significantly better than the default threshold in terms of accuracy and F1 score. If higher values of sensitivity are desired, one of the two sensitivity-weighted could be of interest.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
Open Access funding provided by University of Turku (including Turku University Central Hospital). The first author was financially supported by the Finnish Culture Foundation.