A1 Refereed original research article in a scientific journal

Pulsar-wind-nebula-powered Galactic center X-ray filament G0.13- 0.11: Proof of the synchrotron nature by IXPE




AuthorsChurazov, Eugene; Khabibullin, Ildar; Barnouin, Thibault; Bucciantini, Niccolò; Costa, Enrico; Di Gesu, Laura; Di Marco, Alessandro; Ferrazzoli, Riccardo; Forman, William; Kaaret, Philip; Kim, Dawoon E.; Kolodziejczak, Jeffery J.; Kraft, Ralph; Marin, Frédéric; Matt, Giorgio; Negro, Michela; Romani, Roger W.; Silvestri, Stefano; Soffitta, Paolo; Sunyaev, Rashid; Svoboda, Jiri; Vikhlinin, Alexey; Weisskopf, Martin C.; Xie, Fei; Agudo, Iván; Antonelli, Lucio A.; Bachetti, Matteo; Baldini, Luca; Baumgartner, Wayne H.; Bellazzini, Ronaldo; Bianchi, Stefano; Bongiorno, Stephen D.; Bonino, Raffaella; Brez, Alessandro; Capitanio, Fiamma; Castellano, Simone; Cavazzuti, Elisabetta; Chen, Chien-Ting; Ciprini, Stefano; De Rosa, Alessandra; Del Monte, Ettore; Di Lalla, Niccolò; Donnarumma, Immacolata; Doroshenko, Victor; Dovčiak, Michal; Ehlert, Steven R.; Enoto, Teruaki; Evangelista, Yuri; Fabiani, Sergio; García, Javier A.; Gunji, Shuichi; Hayashida, Kiyoshi; Heyl, Jeremy; Iwakiri, Wataru; Jorstad, Svetlana G.; Karas, Vladimir; Kislat, Fabian; Kitaguchi, Takao; Krawczynski, Henric; La Monaca, Fabio; Latronico, Luca; Liodakis, Ioannis; Maldera, Simone; Manfreda, Alberto; Marinucci, Andrea; Marscher, Alan P.; Marshall, Herman L.; Massaro, Francesco; Mitsuishi, Ikuyuki; Mizuno, Tsunefumi; Muleri, Fabio; Ng, Chi-Yung; O’Dell, Stephen L.; Omodei, Nicola; Oppedisano, Chiara; Papitto, Alessandro; Pavlov, George G.; Peirson, Abel L.; Perri, Matteo; Pesce-Rollins, Melissa; Petrucci, Pierre-Olivier; Pilia, Maura; Possenti, Andrea; Poutanen, Juri; Puccetti, Simonetta; Ramsey, Brian D.; Rankin, John; Ratheesh, Ajay; Roberts, Oliver J.; Sgrò, Carmelo; Slane, Patrick; Spandre, Gloria; Swartz, Douglas A.; Tamagawa, Toru; Tavecchio, Fabrizio; Taverna, Roberto; Tawara, Yuzuru; Tennant, Allyn F.; Thomas, Nicholas E.; Tombesi, Francesco; Trois, Alessio; Tsygankov, Sergey S.; Turolla, Roberto; Vink, Jacco; Wu, Kinwah; Zane, Silvia

PublisherEDP Sciences

Publication year2024

JournalAstronomy and Astrophysics

Journal name in sourceAstronomy and Astrophysics

Article numberA14

Volume686

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202349080

Web address https://www.aanda.org/articles/aa/full_html/2024/06/aa49080-23/aa49080-23.html

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/457172983

Preprint addresshttps://arxiv.org/abs/2312.04421


Abstract
We report the discovery of X-ray polarization from the X-ray-bright filament G0.13-0.11 in the Galactic center (GC) region. This filament features a bright, hard X-ray source that is most plausibly a pulsar wind nebula (PWN) and an extended and structured diffuse component. Combining the polarization signal from IXPE with the imaging/spectroscopic data from Chandra, we find that X-ray emission of G0.13-0.11 is highly polarized PD = 57(±18)% in the 3-6 keV band, while the polarization angle is PA = 21° ± 9). This high degree of polarization proves the synchrotron origin of the X-ray emission from G0.13-0.11. In turn, the measured polarization angle implies that the X-ray emission is polarized approximately perpendicular to a sequence of nonthermal radio filaments that may be part of the GC Radio Arc. The magnetic field on the order of 100 μG appears to be preferentially ordered along the filaments. The above field strength is the fiducial value that makes our model self-consistent, while the other conclusions are largely model independent.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Funding information in the publication
The US contribution is supported by the National Aeronautics and Space Administration (NASA) and led and managed by its Marshall Space Flight Center (MSFC), with industry partner Ball Aerospace (contract NNM15AA18C). The Italian contribution is supported by the Italian Space Agency (Agenzia Spaziale Italiana, ASI) through contract ASI-OHBI-2022-13-I.0, agreements ASI-INAF-2022-19-HH.0 and ASI-INFN-2017.13-H0, and its Space Science Data Center (SSDC) with agreements ASI-INAF-2022-14-HH.0 and ASI-INFN 2021-43-HH.0, and by the Istituto Nazionale di Astrofisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. This research used data products provided by the IXPE Team (MSFC, SSDC, INAF, and INFN) and distributed with additional software tools by the High-Energy Astrophysics Science Archive Research Center (HEASARC), at NASA Goddard Space Flight Center (GSFC). I.K. acknowledges support by the COMPLEX project from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program grant agreement ERC-2019-AdG 882679. R.K., A.V., and W.F. acknowledge support from the Smithsonian Institution, the High Resolution Camera Project through NASA contract NAS8-03060, and Chandra grant GO1-22136X. N.B. is supported by the INAF MiniGrant “PWNnumpol – Numerical Studies of Pulsar Wind Nebulae in The Light of IXPE”. E.Co., A.D.M., R.F., P.So., S.F., F.L.M., and F.Mu. are partially supported by MAECI with grant CN24GR08 “GRBAXP: Guangxi-Rome Bilateral Agreement for X-ray Polarimetry in Astrophysics”. The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. J.S., M.D., and V.K. thank GACR project 21-06825X for the support and institutional support from RVO:67985815. References Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33 [Google Scholar] Bandiera, R. 2008, A&A, 490, L3 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar] Bandiera, R., & Petruk, O. 2016, MNRAS, 459, 178 [NASA ADS] [CrossRef] [Google Scholar] Barkov, M. V., & Lyutikov, M. 2019, MNRAS, 489, L28 [NASA ADS] [CrossRef] [Google Scholar] Barkov, M. V., Lyutikov, M., & Khangulyan, D. 2019, MNRAS, 484, 4760 [NASA ADS] [CrossRef] [Google Scholar] Beck, R., & Krause, M. 2005, Astron. Nachr., 326, 414 [Google Scholar] Brienza, M., Shimwell, T. W., de Gasperin, F., et al. 2021, Nat. Astron., 5, 1261 [NASA ADS] [CrossRef] [Google Scholar] Bykov, A. M., Amato, E., Petrov, A. E., Krassilchtchikov, A. M., & Levenfish, K. P. 2017, Space Sci. Rev., 207, 235 [Google Scholar] Churazov, E., Sunyaev, R., & Sazonov, S. 2002, MNRAS, 330, 817 [NASA ADS] [CrossRef] [Google Scholar] Churazov, E., Khabibullin, I., Bykov, A. M., Lyskova, N., & Sunyaev, R. 2023, A&A, 670, A156 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar] de Vries, M., Romani, R. W., Kargaltsev, O., et al. 2022, ApJ, 939, 70 [NASA ADS] [CrossRef] [Google Scholar] Di Marco, A., Soffitta, P., Costa, E., et al. 2023, AJ, 165, 143 [CrossRef] [Google Scholar] Gaensler, B. M., & Slane, P. O. 2006, ARA&A, 44, 17 [Google Scholar] Guan, Y., Clark, S. E., Hensley, B. S., et al. 2021, ApJ, 920, 6 [NASA ADS] [CrossRef] [Google Scholar] H.E.S.S. Collaboration (Abdalla, H., et al.) 2018, A&A, 612, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar] Heywood, I., Camilo, F., Cotton, W. D., et al. 2019, Nature, 573, 235 [Google Scholar] Heywood, I., Rammala, I., Camilo, F., et al. 2022, ApJ, 925, 165 [NASA ADS] [CrossRef] [Google Scholar] Kargaltsev, O., Pavlov, G. G., Klingler, N., & Rangelov, B. 2017, J. Plasma Phys., 83, 635830501 [NASA ADS] [CrossRef] [Google Scholar] Kislat, F., Clark, B., Beilicke, M., & Krawczynski, H. 2015, Astropart. Phys., 68, 45 [NASA ADS] [CrossRef] [Google Scholar] Koyama, K., Maeda, Y., Sonobe, T., et al. 1996, PASJ, 48, 249 [Google Scholar] Lang, C.


Last updated on 2025-27-01 at 19:28