A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Generalized-rate-operator quantum jumps via realization-dependent transformations
Tekijät: Settimo, Federico; Luoma, Kimmo; Chruściński, Dariusz; Vacchini, Bassano; Smirne, Andrea; Piilo, Jyrki
Kustantaja: American Physical Society
Julkaisuvuosi: 2024
Journal: Physical Review A
Tietokannassa oleva lehden nimi: Phys. Rev. A
Artikkelin numero: 062201
Vuosikerta: 109
Numero: 6
ISSN: 2469-9926
eISSN: 2469-9934
DOI: https://doi.org/10.1103/PhysRevA.109.062201
Verkko-osoite: https://link.aps.org/doi/10.1103/PhysRevA.109.062201
Rinnakkaistallenteen osoite: https://arxiv.org/abs/2402.12445
Preprintin osoite: https://arxiv.org/abs/2402.12445v1
The dynamics of open quantum systems is often solved by stochastic unravelings where the average over the state-vector realizations reproduces the density matrix evolution. We focus on quantum-jump descriptions based on the rate-operator formalism. In addition to displaying and exploiting different equivalent ways of writing the master equation, we introduce state-dependent rate-operator transformations within the framework of stochastic pure state realizations, allowing us to extend and generalize the previously developed formalism. As a consequence, this improves the controllability of the stochastic realizations and subsequently greatly benefits when searching for optimal simulation schemes to solve open system dynamics. At a fundamental level, intriguingly, our results show that it is possible to have positive unravelings, without reverse quantum jumps and avoiding the use of auxiliary degrees freedom, in a number of example cases even when the corresponding dynamical map breaks the property of P divisibility, thus being in the strongly non-Markovian regime.
Julkaisussa olevat rahoitustiedot:
F.S. acknowledges support from the Magnus Ehrnrooth Foundation. A.S. acknowledges financial support from MUR under the “PON Ricerca e Innovazione 2014-2020” project EEQU. D.C. was supported by the Polish National Science Center project No. 2018/30/A/ST2/00837.