A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Generalized-rate-operator quantum jumps via realization-dependent transformations




TekijätSettimo, Federico; Luoma, Kimmo; Chruściński, Dariusz; Vacchini, Bassano; Smirne, Andrea; Piilo, Jyrki

KustantajaAmerican Physical Society

Julkaisuvuosi2024

JournalPhysical Review A

Tietokannassa oleva lehden nimiPhys. Rev. A

Artikkelin numero062201

Vuosikerta109

Numero6

ISSN2469-9926

eISSN2469-9934

DOIhttps://doi.org/10.1103/PhysRevA.109.062201

Verkko-osoitehttps://link.aps.org/doi/10.1103/PhysRevA.109.062201

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/2402.12445

Preprintin osoitehttps://arxiv.org/abs/2402.12445v1


Tiivistelmä

The dynamics of open quantum systems is often solved by stochastic unravelings where the average over the state-vector realizations reproduces the density matrix evolution. We focus on quantum-jump descriptions based on the rate-operator formalism. In addition to displaying and exploiting different equivalent ways of writing the master equation, we introduce state-dependent rate-operator transformations within the framework of stochastic pure state realizations, allowing us to extend and generalize the previously developed formalism. As a consequence, this improves the controllability of the stochastic realizations and subsequently greatly benefits when searching for optimal simulation schemes to solve open system dynamics. At a fundamental level, intriguingly, our results show that it is possible to have positive unravelings, without reverse quantum jumps and avoiding the use of auxiliary degrees freedom, in a number of example cases even when the corresponding dynamical map breaks the property of P divisibility, thus being in the strongly non-Markovian regime.


Julkaisussa olevat rahoitustiedot
F.S. acknowledges support from the Magnus Ehrnrooth Foundation. A.S. acknowledges financial support from MUR under the “PON Ricerca e Innovazione 2014-2020” project EEQU. D.C. was supported by the Polish National Science Center project No. 2018/30/A/ST2/00837.


Last updated on 2025-27-01 at 19:01