A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Convergence of generalized Orlicz norms with lower growth rate tending to infinity




TekijätBertazzoni, Giacomo; Harjulehto, Petteri; Hästö, Peter

KustantajaAcademic Press

Julkaisuvuosi2024

JournalJournal of Mathematical Analysis and Applications

Tietokannassa oleva lehden nimiJournal of Mathematical Analysis and Applications

Artikkelin numero128666

Vuosikerta539

Numero2

ISSN0022-247X

eISSN1096-0813

DOIhttps://doi.org/10.1016/j.jmaa.2024.128666

Verkko-osoitehttps://doi.org/10.1016/j.jmaa.2024.128666

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457142478

Preprintin osoitehttps://arxiv.org/abs/2306.12170


Tiivistelmä
We study convergence of generalized Orlicz energies when the lower growth-rate tends to infinity. We generalize results by Bocea–Mihăilescu (Orlicz case) and Eleuteri–Prinari (variable exponent case) and allow weaker assumptions: we are also able to handle unbounded domains with irregular boundary and non-doubling energies.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-01 at 19:44