A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Convergence of generalized Orlicz norms with lower growth rate tending to infinity
Tekijät: Bertazzoni, Giacomo; Harjulehto, Petteri; Hästö, Peter
Kustantaja: Academic Press
Julkaisuvuosi: 2024
Journal: Journal of Mathematical Analysis and Applications
Tietokannassa oleva lehden nimi: Journal of Mathematical Analysis and Applications
Artikkelin numero: 128666
Vuosikerta: 539
Numero: 2
ISSN: 0022-247X
eISSN: 1096-0813
DOI: https://doi.org/10.1016/j.jmaa.2024.128666
Verkko-osoite: https://doi.org/10.1016/j.jmaa.2024.128666
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457142478
Preprintin osoite: https://arxiv.org/abs/2306.12170
We study convergence of generalized Orlicz energies when the lower growth-rate tends to infinity. We generalize results by Bocea–Mihăilescu (Orlicz case) and Eleuteri–Prinari (variable exponent case) and allow weaker assumptions: we are also able to handle unbounded domains with irregular boundary and non-doubling energies.
Ladattava julkaisu This is an electronic reprint of the original article. |