A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On monoids of metric preserving functions
Tekijät: Bilet, Viktoriia; Dovgoshey, Oleksiy
Kustantaja: FRONTIERS MEDIA SA
Julkaisuvuosi: 2024
Journal: Frontiers in Applied Mathematics and Statistics
Artikkelin numero: 1420671
Vuosikerta: 10
eISSN: 2297-4687
DOI: https://doi.org/10.3389/fams.2024.1420671
Verkko-osoite: https://doi.org/10.3389/fams.2024.1420671
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457137344
Let X be a class of metric spaces and let PX be the set of all f : [0, ∞) → [0, ∞) preserving X, i.e., (Y, f ∘ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the set of all metric preserving functions, we show that the equality PX = A has a solution if A is a monoid with respect to the operation of function composition. In particular, for the set SI of all amenable subadditive increasing functions, there is a class X of metric spaces such that PX = SI holds.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.