A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On monoids of metric preserving functions




TekijätBilet, Viktoriia; Dovgoshey, Oleksiy

KustantajaFRONTIERS MEDIA SA

Julkaisuvuosi2024

JournalFrontiers in Applied Mathematics and Statistics

Artikkelin numero1420671

Vuosikerta10

eISSN2297-4687

DOIhttps://doi.org/10.3389/fams.2024.1420671

Verkko-osoitehttps://doi.org/10.3389/fams.2024.1420671

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457137344


Tiivistelmä

Let X be a class of metric spaces and let PX be the set of all f : [0, ∞) → [0, ∞) preserving X, i.e., (Y, f ∘ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the set of all metric preserving functions, we show that the equality PX = A has a solution if A is a monoid with respect to the operation of function composition. In particular, for the set SI of all amenable subadditive increasing functions, there is a class X of metric spaces such that PX = SI holds.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Last updated on 2025-27-01 at 19:44