A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Euclid preparation: XL. Impact of magnification on spectroscopic galaxy clustering
Tekijät: Jelic-Cizmek G., Sorrenti F., Lepori F., Bonvin C., Camera S., Castander F.J., Durrer R., Fosalba P., Kunz M., Lombriser L., Tutusaus I., Viglione C., Sakr Z., Aghanim N., Amara A., Andreon S., Baldi M., Bardelli S., Bodendorf C., Bonino D., Branchini E., Brescia M., Brinchmann J., Capobianco V., Carbone C., Cardone V.F., Carretero J., Casas S., Castellano M., Cavuoti S., Cimatti A., Congedo G., Conselice C.J., Conversi L., Copin Y., Corcione L., Courbin F., Courtois H.M., Cropper M., Degaudenzi H., Di Giorgio A.M., Dinis J., Dubath F., Dupac X., Dusini S., Farina M., Farrens S., Ferriol S., Frailis M., Franceschi E., Fumana M., Galeotta S., Garilli B., Gillis B., Giocoli C., Grazian A., Grupp F., Haugan S.V.H., Hoekstra H., Holmes W., Hormuth F., Hornstrup A., Jahnke K., Keihänen E., Kermiche S., Kiessling A., Kilbinger M., Kubik B., Kurki-Suonio H., Lilje P.B., Lindholm V., Lloro I., Mansutti O., Marggraf O., Markovic K., Martinet N., Marulli F., Massey R., Medinaceli E., Mei S., Meneghetti M., Merlin E., Meylan G., Moscardini L., Munari E., Niemi S.M., Padilla C., Paltani S., Pasian F., Pedersen K., Percival W.J., Pettorino V., Polenta G., Poncet M., Popa L.A., Raison F., Rebolo R., Renzi A., Rhodes J., Riccio G., Romelli E., Roncarelli M., Rossetti E., Saglia R., Sapone D., Sartoris B., Schneider P., Schrabback T., Secroun A., Seidel G., Serrano S., Sirignano C., Sirri G., Stanco L., Starck J.L., Surace C., Tallada-Crespí P., Tavagnacco D., Taylor A.N., Tereno I., Toledo-Moreo R., Torradeflot F., Valentijn E.A., Valenziano L., Vassallo T., Veropalumbo A., Wang Y., Weller J., Zamorani G., Zoubian J., Zucca E., Biviano A., Boucaud A., Bozzo E., Colodro-Conde C., Di Ferdinando D., Graciá-Carpio J., Liebing P., Mauri N., Neissner C., Scottez V., Tenti M., Viel M., Wiesmann M., Akrami Y., Allevato V., Anselmi S., Baccigalupi C., Balaguera-Antolínez A., Ballardini M., Bruton S., Burigana C., Cabanac R., Cappi A., Carvalho C.S., Castignani G., Castro T., Cañas-Herrera G., Chambers K.C., Cooray A.R., Coupon J., Davini S., De La Torre S., De Lucia G., Desprez G., Di Domizio S., Dole H., Díaz-Sánchez A., Escartin Vigo J.A., Escoffier S., Ferreira P.G., Ferrero I., Finelli F., Gabarra L., Ganga K., García-Bellido J., Giacomini F., Gozaliasl G., Guinet D., Hildebrandt H., Ilić S., Jimenez Muñoz A., Joudaki S., Kajava J.J.E., Kansal V., Kirkpatrick C.C., Legrand L., Loureiro A., Magliocchetti M., Mainetti G., Maoli R., Martinelli M., Martins C.J.A.P., Matthew S., Maturi M., Maurin L., Metcalf R.B., Migliaccio M., Monaco P., Morgante G., Nadathur S., Patrizii L., Pezzotta A., Popa V., Porciani C., Potter D., Pöntinen M., Reimberg P., Rocci P.F., Sánchez A.G., Schneider A., Schultheis M., Sefusatti E., Sereno M., Silvestri A., Simon P., Spurio Mancini A., Steinwagner J., Testera G., Tewes M., Teyssier R., Toft S., Tosi S., Troja A., Tucci M., Valiviita J., Vergani D., Tanidis K.
Kustantaja: EDP Sciences
Julkaisuvuosi: 2024
Journal: Astronomy and Astrophysics
Tietokannassa oleva lehden nimi: Astronomy and Astrophysics
Artikkelin numero: A167
Vuosikerta: 685
eISSN: 0004-6361
DOI: https://doi.org/10.1051/0004-6361/202348628
Verkko-osoite: https://doi.org/10.1051/0004-6361/202348628
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/457044886
In this paper we investigate the impact of lensing magnification on the analysis of Euclid's spectroscopic survey using the multipoles of the two-point correlation function for galaxy clustering. We determine the impact of lensing magnification on cosmological constraints as well as the expected shift in the best-fit parameters if magnification is ignored. We considered two cosmological analyses: (i) a full-shape analysis based on the δ cold dark matter (CDM) model and its extension w0waCDM and (ii) a model-independent analysis that measures the growth rate of structure in each redshift bin. We adopted two complementary approaches in our forecast: the Fisher matrix formalism and the Markov chain Monte Carlo method. The fiducial values of the local count slope (or magnification bias), which regulates the amplitude of the lensing magnification, have been estimated from the Euclid Flagship simulations. We used linear perturbation theory and modelled the two-point correlation function with the public code coffe. For a δ CDM model, we find that the estimation of cosmological parameters is biased at the level of 0.4- 0.7 standard deviations, while for a w0waCDM dynamical dark energy model, lensing magnification has a somewhat smaller impact, with shifts below 0.5 standard deviations. For a model-independent analysis aimed at measuring the growth rate of structure, we find that the estimation of the growth rate is biased by up to 1.2 standard deviations in the highest redshift bin. As a result, lensing magnification cannot be neglected in the spectroscopic survey, especially if we want to determine the growth factor, one of the most promising ways to test general relativity with Euclid. We also find that, by including lensing magnification with a simple template, this shift can be almost entirely eliminated with minimal computational overhead.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
We acknowledge the use of the HPC cluster Baobab at the University of Geneva for conducting our numerical calculations. G.J.C. acknowledges support from the Swiss National Science Foundation (SNSF), professorship grant (No. 202671). F.S., C.B., R.D. and M.K. acknowledge support from the Swiss National Science Foundation Sinergia Grant CRSII5198674. C.B. acknowledges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 863929; project title “Testing the law of gravity with novel large-scale structure observables”). L.L. is supported by a SNSF professorship grant (No. 202671). P.F. acknowledges support from Ministerio de Ciencia e Innovacion, project PID2019-111317GB-C31, the European Research Executive Agency HORIZON-MSCA-2021-SE-01 Research and Innovation programme under the Marie Skłodowska–Curie grant agreement number 101086388 (LACEGAL). P.F. is also partially supported by the program Unidad de Excelencia María de Maeztu CEX2020-001058-M. C.V. acknowledges an FPI grant from Ministerio de Ciencia e Innovacion, project PID2019-111317GB-C31. This work has made use of CosmoHub. CosmoHub has been developed by the Port d’Informació Científica (PIC), maintained through a collaboration of the Institut de Física d’Altes Energies (IFAE) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and the Institute of Space Sciences (CSIC & IEEC), and was partially funded by the “Plan Estatal de Investigación Científica y Técnica y de Innovación” program of the Spanish government. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Études Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org).