A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

In Silico Application of the Epsilon-Greedy Algorithm for Frequency Optimization of Electrical Neurostimulation for Hypersynchronous Disorders




TekijätDa Silva Lima, Gabriel; Cota, Rosa Vinícius; Moreira Bessa, Wallace

ToimittajaRiascos Salas, Jaime A.; Cota, Vinícius Rosa; Villota Hernán; Betancur Vasquez, Daniel

Konferenssin vakiintunut nimiLatin American Workshop on Computational Neuroscience

Julkaisuvuosi2024

JournalCommunications in Computer and Information Science

Kokoomateoksen nimiComputational Neuroscience: 4th Latin American Workshop, LAWCN 2023 Envigado, Colombia, November 28–30, 2023, Revised Selected Papers

Vuosikerta2108

Aloitussivu57

Lopetussivu68

ISBN978-3-031-63847-3

eISBN978-3-031-63848-0

eISSN1865-0937

DOIhttps://doi.org/10.1007/978-3-031-63848-0_5

Verkko-osoitehttps://doi.org/10.1007/978-3-031-63848-0_5

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/457014030


Tiivistelmä

One of the most promising alternatives to suppress epileptic seizures in drug-resistant and neurosurgery-refractory patients is using electro-electronic devices. By applying an appropriate pulsatile electrical stimulation, the process of ictogenesis can be quickly suppressed. However, in designing such stimulation devices, a common problem is defining suitable parameters such as pulse amplitude, duration, and frequency. In this work, we propose a machine learning technique based on the epsilon-greedy algorithm to optimize the pulse frequency which could prevent abnormal neuronal activity without exceeding energy usage for the stimulation. Five different simulations were carried out in order to evaluate the contribution of the energy consumption in determining the minimum frequency. The results show the efficacy of the proposed algorithm to search the minimum pulse frequency necessary to suppress epileptic seizures.


Julkaisussa olevat rahoitustiedot
This work was supported by the Marie Skłodowska-Curie Individual Fellowship MoRPHEUS granted to VC, Grant Agreement no. 101032054, funded by the European Union under the framework programme H2020-EU.1.3. - EXCELLENT SCIENCE, and by the Brazilian research agencies CNPq and CAPES.


Last updated on 2025-27-01 at 19:03