A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

When the sieve works II




TekijätKaisa Matomäki, Xuancheng Shao

KustantajaDe Gruyter

Julkaisuvuosi2020

JournalJournal fur die reine und angewandte mathematik

Tietokannassa oleva lehden nimiJournal fur die Reine und Angewandte Mathematik

Vuosikerta2020

Numero763

eISSN1435-5345

DOIhttps://doi.org/10.1515/crelle-2018-0034

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/45631027


Tiivistelmä

For a set of primes P, let Ψ(x;P) be the number of positive integers n≤x all of whose prime factors lie in P. In this paper we classify the sets of primes P such that Ψ(x;P) is within a constant factor of its expected value. This task was recently initiated by Granville, Koukoulopoulos and Matomäki [A. Granville, D. Koukoulopoulos and K. Matomäki, When the sieve works, Duke Math. J. 164 2015, 10, 1935–1969] and their main conjecture is proved in this paper. In particular, our main theorem implies that, if not too many large primes are sieved out in the sense that

∑p∈Px1/v0 and v≥u≥1, then Ψ(x;P)≫ε,vx∏p≤xp∉P(1−1p).


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:30