A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A synthetic lethal dependency on casein kinase 2 in response to replication-perturbing therapeutics in RB1-deficient cancer cells




TekijätBulanova, Daria; Akimov, Yevhen; Senkowski, Wojciech; Oikkonen, Jaana; Gall-Mas, Laura; Timonen, Sanna; Elmadani, Manar; Hynninen, Johanna; Hautaniemi, Sampsa; Aittokallio, Tero; Wennerberg, Krister

KustantajaAmerican Association for the Advancement of Science

Julkaisuvuosi2024

JournalScience Advances

Tietokannassa oleva lehden nimiScience advances

Lehden akronyymiSci Adv

Artikkelin numeroeadj1564

Vuosikerta10

Numero21

eISSN2375-2548

DOIhttps://doi.org/10.1126/sciadv.adj1564

Verkko-osoitehttps://www.science.org/doi/10.1126/sciadv.adj1564

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/454721380


Tiivistelmä
Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This work was supported by European Union’s Horizon 2020 research and innovation program grant 667403 (HERCULES) to D.B., Y.A., J.O., S.H., J.H., T.A., and K.W.; European Union’s Horizon 2020 research and innovation program grant 965193 (DECIDER) to S.H. and J.H.; European Union’s Horizon 2020 research and innovation program grant 845045 (RESIST3D) to W.S.; Danish Cancer Society grant R204-A12322 to W.S.; Danish Cancer Society grant R302-A17398 to K.W.; Novo Nordisk Foundation Center for Stem Cell Biology grant NNF17CC0027852 to D.B. and K.W.; Novo Nordisk Foundation Infrastructure grant number NNF20OC0061734 to K.W.; Novo Nordisk Foundation Interdisciplinary Synergy Programme 2021 grant NNF21OC0070381 to K.W. and T.A.; Innovation Fund Denmark/ERA PerMed JTC2020 grant 0204-00005B (PARIS) to K.W.; Cancer Society of Finland to T.A.; Sigrid Jusélius Foundation to T.A.; and Academy of Finland (grants 326238, 340141, 345803, and 344698) to T.A.


Last updated on 2025-13-02 at 10:05