A1 Refereed original research article in a scientific journal

Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation




AuthorsMarco Cattaneo, Gian Luca Giorgi, Sabrina Maniscalco, Roberta Zambrini

PublisherInstitute of Physics Pub.

Publication year2019

JournalNew Journal of Physics

Journal name in sourceNEW JOURNAL OF PHYSICS

Journal acronymNEW J PHYS

Article number113045

Volume21

Issue11

Number of pages23

ISSN1367-2630

eISSN1367-2630

DOIhttps://doi.org/10.1088/1367-2630/ab54ac

Web address https://iopscience.iop.org/article/10.1088/1367-2630/ab54ac

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/45452383


Abstract
Open systems of coupled qubits are ubiquitous in quantum physics. Finding a suitable master equation to describe their dynamics is therefore a crucial task that must be addressed with utmost attention. In the recent past, many efforts have been made toward the possibility of employing local master equations, which compute the interaction with the environment neglecting the direct coupling between the qubits, and for this reason may be easier to solve. Here, we provide a detailed derivation of the Markovian master equation for two coupled qubits interacting with common and separate baths, considering pure dephasing as well as dissipation. Then, we explore the differences between the local and global master equation, showing that they intrinsically depend on the way we apply the secular approximation. Our results prove that the global approach with partial secular approximation always provides the most accurate choice for the master equation when Born?Markov approximations hold, even for small inter-system coupling constants. Using different master equations we compute the stationary heat current between two separate baths, the entanglement dynamics generated by a common bath, and the emergence of spontaneous synchronization, showing the importance of the accurate choice of approach.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:17