A1 Refereed original research article in a scientific journal

JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL




AuthorsLinus Wahnschaffe, Till Braun, Sanna Timonen, Anil K. Giri, Alexandra Schrader, PreranaWagle, Henrikki Almusa, Patricia Johansson, Dorine Bellanger, Cristina López, Claudia Haferlach, Marc-Henri Stern, Jan Dürig, Reiner Siebert, Satu Mustjoki, Tero Aittokallio, Marco Herling

PublisherMDPI

Publication year2019

JournalCancers

Journal name in sourceCANCERS

Journal acronymCANCERS

Article numberARTN 1833

Volume11

Issue12

Number of pages18

eISSN2072-6694

DOIhttps://doi.org/10.3390/cancers11121833

Web address https://www.mdpi.com/2072-6694/11/12/1833

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/45146502


Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell leukemia. Recent studies detected genomic aberrations affecting JAK and STAT genes in T-PLL. Due to the limited number of primary patient samples available, genomic analyses of the JAK/STAT pathway have been performed in rather small cohorts. Therefore, we conducted-via a primary-data based pipeline-a meta-analysis that re-evaluated the genomic landscape of T-PLL. It included all available data sets with sequence information on JAK or STAT gene loci in 275 T-PLL. We eliminated overlapping cases and determined a cumulative rate of 62.1% of cases with mutated JAK or STAT genes. Most frequently, JAK1 (6.3%), JAK3 (36.4%), and STAT5B (18.8%) carried somatic single-nucleotide variants (SNVs), with missense mutations in the SH2 or pseudokinase domains as most prevalent. Importantly, these lesions were predominantly subclonal. We did not detect any strong association between mutations of a JAK or STAT gene with clinical characteristics. Irrespective of the presence of gain-of-function (GOF) SNVs, basal phosphorylation of STAT5B was elevated in all analyzed T-PLL. Fittingly, a significant proportion of genes encoding for potential negative regulators of STAT5B showed genomic losses (in 71.4% of T-PLL in total, in 68.4% of T-PLL without any JAK or STAT mutations). They included DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9. Overall, considering such losses of negative regulators and the GOF mutations in JAK and STAT genes, a total of 89.8% of T-PLL revealed a genomic aberration potentially explaining enhanced STAT5B activity. In essence, we present a comprehensive meta-analysis on the highly prevalent genomic lesions that affect genes encoding JAK/STAT signaling components. This provides an overview of possible modes of activation of this pathway in a large cohort of T-PLL. In light of new advances in JAK/STAT inhibitor development, we also outline translational contexts for harnessing active JAK/STAT signaling, which has emerged as a 'secondary' hallmark of T-PLL.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:05