A detailed investigation of single-photon laser enabled Auger decay in neon




Daehyun You, Kiyoshi Ueda, Marco Ruberti, Kenichi L Ishikawa, Paolo Antonio Carpeggiani, Tamás Csizmadia, Lénárd Gulyás Oldal, Harshitha N G, Giuseppe Sansone, Praveen Kumar Maroju, Kuno Kooser, Carlo Callegari, Michele Di Fraia, Oksana Plekan, Luca Giannessi, Enrico Allaria, Giovanni De Ninno, Mauro Trovò, Laura Badano, Bruno Diviacco, David Gauthier, Najmeh Mirian, Giuseppe Penco, Primož Rebernik Ribič, Simone Spampinati, Carlo Spezzani, Simone Di Mitri, Giulio Gaio, Kevin C Prince

PublisherIOP PUBLISHING LTD

2019

New Journal of Physics

NEW JOURNAL OF PHYSICS

NEW J PHYS

ARTN 113036

21

11

11

1367-2630

1367-2630

DOIhttps://doi.org/10.1088/1367-2630/ab520d

https://research.utu.fi/converis/portal/detail/Publication/44608737



Single-photon laser enabled Auger decay (spLEAD) is an electronic de-excitation process which was recently predicted and observed in Ne. We have investigated it using bichromatic phase-locked free electron laser radiation and extensive angle-resolved photoelectron measurements, supported by a detailed theoretical model. We first used separately the fundamental wavelength resonant with the Ne+ 2s?2p transition, 46.17 nm, and its second harmonic, 23.08 nm, then their phase-locked bichromatic combination. In the latter case the phase difference between the two wavelengths was scanned, and interference effects were observed, confirming that the spLEAD process was occurring. The detailed theoretical model we developed qualitatively predicts all observations: branching ratios between the final Auger states, their amplitudes of oscillation as a function of phase, the phase lag between the oscillations of different final states, and partial cancellation of the oscillations under certain conditions.

Last updated on 2024-26-11 at 14:25