Fourier uniformity of bounded multiplicative functions in short intervals on average




Kaisa Matomäki, Maksym Radziwiłł, Terence Tao

PublisherSpringer New York LLC

2020

Inventiones Mathematicae

Inventiones Mathematicae

220

1

58

1432-1297

DOIhttps://doi.org/10.1007/s00222-019-00926-w

https://research.utu.fi/converis/portal/detail/Publication/44132506



Let   λ  denote the Liouville function. We show that as   X→∞ ,

∫2XXsupα∣∣∣∣∑x

for all   H≥Xθ  with   θ>0  fixed but arbitrarily small. Previously, this was only known for   θ>5/8 . For smaller values of   θ  this is the first “non-trivial” case of local Fourier uniformity on average at this scale. We also obtain the analogous statement for (non-pretentious) 1-bounded multiplicative functions. We illustrate the strength of the result by obtaining cancellations in the sum of   λ(n)Λ(n+h)Λ(n+2h)  over the ranges   h


Last updated on 2024-26-11 at 20:36