A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions
Tekijät: Emelichev Vladimir, Nikulin Yury
Julkaisuvuosi: 2019
Journal: Cybernetics and Systems Analysis
Vuosikerta: 55
Numero: 6
Aloitussivu: 949
Lopetussivu: 957
Sivujen määrä: 9
ISSN: 1060-0396
eISSN: 1573-8337
DOI: https://doi.org/10.1007/s10559-019-00205-9(external)
Verkko-osoite: http://www.kibernetika.org/volumes/2019/numbers/06/articles/08/ArticleDetailsEU.html(external)
We consider a multicriteria integer linear programming problem with a targeting set of optimal solutions given by the set of all individual criterion minimizers (extrema). In this study, the lower and upper attainable bounds on the quasistability radius of the set of extremum solutions are obtained when solution and criterion spaces are endowed with different Hlder’s norms. As a corollary, an analytical formula for the quasistability radius is obtained for the case where criterion space is endowed with Chebyshev’s norm. Some computational challenges are also discussed.