A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On Stronger Types of Locating-Dominating Codes




TekijätVille Junnila, Tero Laihonen, Tuomo Lehtilä, María Luz Puertas

KustantajaDISCRETE MATHEMATICS THEORETICAL COMPUTER SCIENCE

Julkaisuvuosi2019

JournalDiscrete Mathematics and Theoretical Computer Science

Lehden akronyymiDISCRETE MATH THEOR

Artikkelin numeroUNSP 1

Vuosikerta21

Numero1

Sivujen määrä21

ISSN1462-7264

eISSN1365-8050

Verkko-osoitehttps://dmtcs.episciences.org/5344

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/42457173


Tiivistelmä
Locating-dominating codes in a graph find their application in sensor networks and have been studied extensively over the years. A locating-dominating code can locate one object in a sensor network, but if there is more than one object, it may lead to false conclusions. In this paper, we consider stronger types of locating-dominating codes which can locate one object and detect if there are multiple objects. We study the properties of these codes and provide bounds on the smallest possible size of these codes, for example, with the aid of the Dilworth number and Sperner families Moreover, these codes are studied in trees and Cartesian products of graphs. We also give the complete realization theorems for the coexistence of the smallest possible size of these codes and the optimal locating-dominating codes in a graph.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:39