A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Every nonnegative real number is an abelian critical exponent




TekijätPeltomäki Jarkko, Whiteland Markus A.

ToimittajaMercaş Robert, Reidenbach Daniel

Konferenssin vakiintunut nimiInternational Conference on Combinatorics on Words

Julkaisuvuosi2019

JournalLecture Notes in Computer Science

Kokoomateoksen nimiCombinatorics on Words: 12th International Conference, WORDS 2019, Loughborough, UK, September 9–13, 2019, Proceedings

Sarjan nimiLecture Notes in Computer Science

Vuosikerta11682

Aloitussivu275

Lopetussivu285

ISBN978-3-030-28795-5

eISBN978-3-030-28796-2

DOIhttps://doi.org/10.1007/978-3-030-28796-2_22

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/41978810


Tiivistelmä

The abelian critical exponent of an infinite word $w$ is defined as the maximum ratio between the exponent and the period of an abelian power occurring in $w$. It was shown by Fici et al. that the set of finite abelian critical exponents of Sturmian words coincides with the Lagrange spectrum. This spectrum contains every large enough positive real number. We construct words whose abelian critical exponents fill the remaining gaps, that is, we prove that for each nonnegative real number $\theta$ there exists an infinite word having abelian critical exponent $\theta$. We also extend this result to the $k$-abelian setting.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:11