A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Optimal variance stopping with linear diffusions




TekijätKamille Sofie Tågholt Gad, Pekka Matomäki

KustantajaElsevier

Julkaisuvuosi2020

JournalStochastic Processes and their Applications

Tietokannassa oleva lehden nimiStochastic Processes and their Applications

Vuosikerta130

Aloitussivu2349

Lopetussivu2383

ISSN0304-4149

eISSN1879-209X

DOIhttps://doi.org/10.1016/j.spa.2019.07.001

Verkko-osoitehttps://doi.org/10.1016/j.spa.2019.07.001

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/1612.09167


Tiivistelmä

We study the optimal stopping problem of maximizing the variance of an unkilled linear diffusion. Especially, we demonstrate how the problem can be solved as a convex two-player zero-sum game, and reveal quite surprising application of game theory by doing so. Our main result shows that an optimal solution can, in a general case, be found among stopping times that are mixtures of two hitting times. This and other revealed phenomena together with suggested solution methods could be helpful when facing more complex non-linear optimal stopping problems. The results are illustrated by a few examples.



Last updated on 2024-26-11 at 12:07