A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Low-Complexity Tilings of the Plane
Tekijät: Jarkko Kari
Toimittaja: Michal Hospodár, Galina Jirásková, Stavros Konstantinidis
Konferenssin vakiintunut nimi: International Conference on Descriptional Complexity of Formal Systems
Kustantaja: Springer Verlag
Julkaisuvuosi: 2019
Journal: Lecture Notes in Computer Science
Kokoomateoksen nimi: Descriptional Complexity of Formal Systems: 21st IFIP WG 1.02 International Conference, DCFS 2019 Košice, Slovakia, July 17–19, 2019
Vuosikerta: 11612
Aloitussivu: 35
Lopetussivu: 45
ISBN: 978-3-030-23246-7
eISBN: 978-3-030-23247-4
ISSN: 0302-9743
DOI: https://doi.org/10.1007/978-3-030-23247-4_2
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/41851167
A two-dimensional configuration is a coloring of the infinite grid Z2 with finitely many colors. For a finite subset D of Z2, the D-patterns of a configuration are the colored patterns of shape D that appear in the configuration. The number of distinct D-patterns of a configuration is a natural measure of its complexity. A configuration is considered having low complexity with respect to shape D if the number of distinct D-patterns is at most |D|, the size of the shape. This extended abstract is a short review of an algebraic method to study periodicity of such low complexity configurations.
Ladattava julkaisu This is an electronic reprint of the original article. |