A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Optimal bounds on codes for location in circulant graphs




TekijätVille Junnila, Tero Laihonen, Gabrielle Paris

KustantajaSPRINGER

Julkaisuvuosi2019

JournalCryptography and Communications

Lehden akronyymiCRYPTOGR COMMUN

Vuosikerta11

Numero4

Aloitussivu621

Lopetussivu640

Sivujen määrä20

ISSN1936-2447

eISSN1936-2455

DOIhttps://doi.org/10.1007/s12095-018-0316-3

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/41355929


Tiivistelmä
Identifying and locating-dominating codes have been studied widely in circulant graphs of type Cn(1,2,3,...,r) over the recent years. In 2013, Ghebleh and Niepel studied locating-dominating and identifying codes in the circulant graphs Cn(1,d) for d=3 and proposed as an open question the case of d>3. In this paper we study identifying, locating-dominating and self-identifying codes in the graphs Cn(1,d), Cn(1,d-1,d) and Cn(1,d-1,d,d+1). We give a new method to study lower bounds for these three codes in the circulant graphs using suitable grids. Moreover, we show that these bounds are attained for infinitely many parameters n and d. In addition, new approaches are provided which give the exact values for the optimal self-identifying codes in Cn(1,3) and Cn(1,4).

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:17