A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On capacity computation for symmetric polygonal condensers
Tekijät: Bezrodnykh S, Bogatyrev A, Goreinov S, Grigor'ev O, Hakula H, Vuorinen M
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 2019
Journal: Journal of Computational and Applied Mathematics
Tietokannassa oleva lehden nimi: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Lehden akronyymi: J COMPUT APPL MATH
Vuosikerta: 361
Aloitussivu: 271
Lopetussivu: 282
Sivujen määrä: 12
ISSN: 0377-0427
eISSN: 1879-1778
DOI: https://doi.org/10.1016/j.cam.2019.03.030
Rinnakkaistallenteen osoite: https://arxiv.org/abs/1804.01420
Tiivistelmä
Making use of two different analytical-numerical methods for capacity computation, we obtain matching to a very high precision numerical values for capacities of a wide family of planar condensers. These two methods are based respectively on the use of the Lauricella function (Bezrodnykh and Vlasov, 2002; Bezrodnykh, 2016 [64,65]) and Riemann theta functions (Bogatyrev, 2012; Grigoriev, 2013; Bogatyrev and Grigor'ev, 2017; Bogatyrev and Grigor'ev, 2018). We apply these results to benchmark the performance of numerical algorithms, which are based on adaptive hp-finite element method (Hakula et al. 2011, 2013, 2018) and boundary integral method (Tsuji, 1959; Jaswon and Symm, 1977; Albrecht and Collatz, 1980). (C) 2019 Elsevier B.V. All rights reserved.
Making use of two different analytical-numerical methods for capacity computation, we obtain matching to a very high precision numerical values for capacities of a wide family of planar condensers. These two methods are based respectively on the use of the Lauricella function (Bezrodnykh and Vlasov, 2002; Bezrodnykh, 2016 [64,65]) and Riemann theta functions (Bogatyrev, 2012; Grigoriev, 2013; Bogatyrev and Grigor'ev, 2017; Bogatyrev and Grigor'ev, 2018). We apply these results to benchmark the performance of numerical algorithms, which are based on adaptive hp-finite element method (Hakula et al. 2011, 2013, 2018) and boundary integral method (Tsuji, 1959; Jaswon and Symm, 1977; Albrecht and Collatz, 1980). (C) 2019 Elsevier B.V. All rights reserved.