A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Reaction Systems and Synchronous Digital Circuits




TekijätZeyi Shang, Sergey Verlan, Ion Petre, Gexiang Zhang

KustantajaMDPI

Julkaisuvuosi2019

JournalMolecules

Tietokannassa oleva lehden nimiMOLECULES

Lehden akronyymiMOLECULES

Artikkelin numeroARTN 961

Vuosikerta24

Numero10

Sivujen määrä13

ISSN1420-3049

eISSN1420-3049

DOIhttps://doi.org/10.3390/molecules24101961

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/41257012


Tiivistelmä
A reaction system is a modeling framework for investigating the functioning of the living cell, focused on capturing cause-effect relationships in biochemical environments. Biochemical processes in this framework are seen to interact with each other by producing the ingredients enabling and/or inhibiting other reactions. They can also be influenced by the environment seen as a systematic driver of the processes through the ingredients brought into the cellular environment. In this paper, the first attempt is made to implement reaction systems in the hardware. We first show a tight relation between reaction systems and synchronous digital circuits, generally used for digital electronics design. We describe the algorithms allowing us to translate one model to the other one, while keeping the same behavior and similar size. We also develop a compiler translating a reaction systems description into hardware circuit description using field-programming gate arrays (FPGA) technology, leading to high performance, hardware-based simulations of reaction systems. This work also opens a novel interesting perspective of analyzing the behavior of biological systems using established industrial tools from electronic circuits design.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:51