A1 Refereed original research article in a scientific journal

Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2




AuthorsHironobu Fukuzawa, Tsukasa Takanashi, Edwin Kukk, Koji Motomura, Shin-ichi Wada, Kiyonobu Nagaya, Yuta Ito, Toshiyuki Nishiyama, Christophe Nicolas, Yoshiaki Kumagai, Denys Iablonskyi, Subhendu Mondal, Tetsuya Tachibana, Daehyun You, Syuhei Yamada, Yuta Sakakibara, Kazuki Asa, Yuhiro Sato, Tsukasa Sakai, Kenji Matsunami, Takayuki Umemoto, Kango Kariyazono, Shinji Kajimoto, Hikaru Sotome, Per Johnsson, Markus S. Schöffler, Gregor Kastirke, Kuno Kooser, Xiao-Jing Liu, Theodor Asavei, Liviu Neagu, Serguei Molodtsov, Kohei Ochiai, Manabu Kanno, Kaoru Yamazaki, Shigeki Owada, Kanade Ogawa, Tetsuo Katayama, Tadashi Togashi, Kensuke Tono, Makina Yabashi, Aryya Ghosh, Kirill Gokhberg, Lorenz S. Cederbaum, Alexander I. Kuleff, Hiroshi Fukumura, Naoki Kishimoto, Artem Rudenko, Catalin Miron, Hirohiko Kono, Kiyoshi Ueda

PublisherNATURE PUBLISHING GROUP

Publication year2019

JournalNature Communications

Journal name in sourceNATURE COMMUNICATIONS

Journal acronymNAT COMMUN

Article numberARTN 2186

Volume10

Number of pages8

ISSN2041-1723

DOIhttps://doi.org/10.1038/s41467-019-10060-z

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/40653916


Abstract
The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in realtime. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (similar to 20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (similar to 100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 11:41