A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Odd order cases of the logarithmically averaged chowla conjecture




TekijätTao T., Teräväinen J.

KustantajaInstitut de Mathematique de Bordeaux

Julkaisuvuosi2018

JournalJournal De Theorie Des Nombres De Bordeaux

Tietokannassa oleva lehden nimiJournal de Theorie des Nombres de Bordeaux

Vuosikerta30

Numero3

Aloitussivu997

Lopetussivu1015

Sivujen määrä19

ISSN1246-7405

DOIhttps://doi.org/10.5802/jtnb.1062

Verkko-osoitehttp://jtnb.cedram.org/item?id=JTNB_2018__30_3_997_0

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/40610631


Tiivistelmä

A famous conjecture of Chowla states that the Liouville function λ(n) has negligible correlations with its shifts. Recently, the authors established a weak form of the logarithmically averaged Elliott conjecture on correlations of multiplicative functions, which in turn implied all the odd order cases of the logarithmically averaged Chowla conjecture. In this note, we give a new proof of the odd order cases of the logarithmically averaged Chowla conjecture. In particular, this proof avoids all mention of ergodic theory, which had an important role in the previous proof.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:30