A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Odd order cases of the logarithmically averaged chowla conjecture
Tekijät: Tao T., Teräväinen J.
Kustantaja: Institut de Mathematique de Bordeaux
Julkaisuvuosi: 2018
Journal: Journal De Theorie Des Nombres De Bordeaux
Tietokannassa oleva lehden nimi: Journal de Theorie des Nombres de Bordeaux
Vuosikerta: 30
Numero: 3
Aloitussivu: 997
Lopetussivu: 1015
Sivujen määrä: 19
ISSN: 1246-7405
DOI: https://doi.org/10.5802/jtnb.1062
Verkko-osoite: http://jtnb.cedram.org/item?id=JTNB_2018__30_3_997_0
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/40610631
A famous conjecture of Chowla states that the Liouville function λ(n) has negligible correlations with its shifts. Recently, the authors established a weak form of the logarithmically averaged Elliott conjecture on correlations of multiplicative functions, which in turn implied all the odd order cases of the logarithmically averaged Chowla conjecture. In this note, we give a new proof of the odd order cases of the logarithmically averaged Chowla conjecture. In particular, this proof avoids all mention of ergodic theory, which had an important role in the previous proof.
Ladattava julkaisu This is an electronic reprint of the original article. |