A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Sliced average variance estimation for multivariate time series




TekijätM. Matilainen, C. Croux, K. Nordhausen, H. Oja

KustantajaTAYLOR & FRANCIS LTD

Julkaisuvuosi2019

JournalStatistics

Tietokannassa oleva lehden nimiSTATISTICS

Lehden akronyymiSTATISTICS-ABINGDON

Vuosikerta53

Numero3

Aloitussivu630

Lopetussivu655

Sivujen määrä26

ISSN0233-1888

DOIhttps://doi.org/10.1080/02331888.2019.1605515

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/40479543


Tiivistelmä
Supervised dimension reduction for time series is challenging as there may be temporal dependence between the response y and the predictors . Recently a time series version of sliced inverse regression, TSIR, was suggested, which applies approximate joint diagonalization of several supervised lagged covariance matrices to consider the temporal nature of the data. In this paper, we develop this concept further and propose a time series version of sliced average variance estimation, TSAVE. As both TSIR and TSAVE have their own advantages and disadvantages, we consider furthermore a hybrid version of TSIR and TSAVE. Based on examples and simulations we demonstrate and evaluate the differences between the three methods and show also that they are superior to apply their iid counterparts to when also using lagged values of the explaining variables as predictors.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:26