A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Building Question-Answer Data Using Web Register Identification




TekijätEskelinen Anni, Myntti Amanda, Henriksson Erik, Pyysalo Sampo, Laippala Veronika

ToimittajaCalzolari Nicoletta, Kan Min-Yen, Hoste Veronique, Lenci Alessandro, Sakti Sakriani, Xue Nianwen

Konferenssin vakiintunut nimiLanguage Resources and Evaluation

Julkaisuvuosi2024

Lehti: LREC Proceedings

Kokoomateoksen nimiProceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Sarjan nimiLREC Proceedings

Aloitussivu2595

Lopetussivu2611

eISBN978-2-493814-10-4

ISSN2522-2686

Julkaisun avoimuus kirjaamishetkelläAvoimesti saatavilla

Julkaisukanavan avoimuus Kokonaan avoin julkaisukanava

Verkko-osoitehttps://aclanthology.org/2024.lrec-main.234.pdf

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/404724872


Tiivistelmä

This article introduces a resource-efficient method for developing question-answer (QA) datasets by extracting QA pairs from web-scale data using machine learning (ML). Our method benefits from recent advances in web register (genre) identification and consists of two ML steps with an additional post-processing step. First, using XLM-R and the multilingual CORE web register corpus series with categories such as QA Forum, we train a multilingual classifier to retrieve documents that are likely to contain QA pairs from web-scale data. Second, we develop a NER-style token classifier to identify the QA text spans within these documents. To this end, we experiment with training on a semi-synthetic dataset built on top of the English LFQA, a small set of manually cleaned web QA pairs in English and Finnish, and a Finnish web QA pair dataset cleaned using ChatGPT. The evaluation of our pipeline demonstrates its capability to efficiently retrieve a substantial volume of QA pairs. While the approach is adaptable to any language given the availability of language models and extensive web data, we showcase its efficiency in English and Finnish, developing the first open, non-synthetic and non-machine translated QA dataset for Finnish – Turku WebQA – comprising over 200,000 QA pairs.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on