A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Estimating causal effects from panel data with dynamic multivariate panel models




TekijätHelske Jouni, Tikka Santtu

KustantajaElsevier

Julkaisuvuosi2024

JournalAdvances in Life Course Research

Tietokannassa oleva lehden nimiAdvances in life course research

Lehden akronyymiAdv Life Course Res

Artikkelin numero100617

Vuosikerta60

ISSN1569-4909

eISSN1879-6974

DOIhttps://doi.org/10.1016/j.alcr.2024.100617

Verkko-osoitehttps://doi.org/10.1016/j.alcr.2024.100617

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/404679602


Tiivistelmä
Panel data are ubiquitous in scientific fields such as social sciences. Various modeling approaches have been presented for observational causal inference based on such data. Existing approaches typically impose restrictive assumptions on the data-generating process such as Gaussian responses or time-invariant effects, or they can only consider short-term causal effects. To surmount these restrictions, we present the dynamic multivariate panel model (DMPM) that supports time-varying, time-invariant, and individual-specific effects, multiple responses across a wide variety of distributions, and arbitrary dependency structures of lagged responses of any order. We formally demonstrate how DMPM facilitates causal inference within the structural causal modeling framework and we take a Bayesian approach for the estimation of the posterior distributions of the model parameters and causal effects of interest. We demonstrate the use of DMPM by applying the approach to both real and synthetic data.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 16:44