Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants




Lauri Nikkanen, Eevi Rintamäki

PublisherPORTLAND PRESS LTD

2019

Biochemical Journal

BIOCHEMICAL JOURNAL

BIOCHEM J

476

1159

1172

14

0264-6021

DOIhttps://doi.org/10.1042/BCJ20180707

https://research.utu.fi/converis/portal/detail/Publication/40377667



Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.

Last updated on 2024-26-11 at 11:07