A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä 
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
Tekijät: Lu Cheng, Siddharth Ramchandran, Tommi Vatanen, Niina Lietzén, Riitta Lahesmaa, Aki Vehtari, Harri Lähdesmäki
Julkaisuvuosi: 2019
Lehti:Nature Communications
Lehden akronyymi: Nat Commun
Artikkelin numero: 1798
Vuosikerta: 10
Aloitussivu: 1798
Sivujen määrä: 11
ISSN: 2041-1723
eISSN: 2041-1723
DOI: https://doi.org/10.1038/s41467-019-09785-8
Verkko-osoite: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470127/pdf/41467_2019_Article_9785.pdf
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/40092706
Biomedical research typically involves longitudinal study designs where 
samples from individuals are measured repeatedly over time and the goal 
is to identify risk factors (covariates) that are associated with an 
outcome value. General linear mixed effect models are the standard 
workhorse for statistical analysis of longitudinal data. However, 
analysis of longitudinal data can be complicated for reasons such as 
difficulties in modelling correlated outcome values, functional 
(time-varying) covariates, nonlinear and non-stationary effects, and 
model inference. We present LonGP, an additive Gaussian process 
regression model that is specifically designed for statistical analysis 
of longitudinal data, which solves these commonly faced challenges. 
LonGP can model time-varying random effects and non-stationary signals, 
incorporate multiple kernel learning, and provide interpretable results 
for the effects of individual covariates and their interactions. We 
demonstrate LonGP's performance and accuracy by analysing various 
simulated and real longitudinal -omics datasets.
Ladattava julkaisu  This is an electronic reprint of the original article.  |