A1 Refereed original research article in a scientific journal

Solving Two Conjectures regarding Codes for Location in Circulant Graphs




AuthorsJunnila V., Laihonen T., Paris G.

PublisherDiscrete Mathematics and Theoretical Computer Science

Publication year2019

JournalDiscrete Mathematics and Theoretical Computer Science

Journal name in sourceDiscrete Mathematics and Theoretical Computer Science

Volume21

Issue3

Number of pages20

ISSN1462-7264

Web address https://dmtcs.episciences.org/5049

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/39973397


Abstract

Identifying and locating-dominating codes have been widely studied in circulant graphs of type Cn(1, 2, . . ., r), which can also be viewed as power graphs of cycles. Recently, Ghebleh and Niepel (2013) considered identification and location-domination in the circulant graphs Cn(1, 3). They showed that the smallest cardinality of a locating-dominating code in Cn(1, 3) is at least ⌈n/3⌉ and at most ⌈n/3⌉ + 1 for all n ≥ 9. Moreover, they proved that the lower bound is strict when n ≡ 0, 1, 4 (mod 6) and conjectured that the lower bound can be increased by one for other n. In this paper, we prove their conjecture. Similarly, they showed that the smallest cardinality of an identifying code in Cn(1, 3) is at least ⌈4n/11⌉ and at most ⌈4n/11⌉ + 1 for all n ≥ 11. Furthermore, they proved that the lower bound is attained for most of the lengths n and conjectured that in the rest of the cases the lower bound can improved by one. This conjecture is also proved in the paper. The proofs of the conjectures are based on a novel approach which, instead of making use of the local properties of the graphs as is usual to identification and location-domination, also manages to take advantage of the global properties of the codes and the underlying graphs.


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:24