A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
The solid-metric dimension
Tekijät: Hakanen Anni, Junnila Ville, Laihonen Tero
Kustantaja: Elsevier B.V.
Julkaisuvuosi: 2020
Journal: Theoretical Computer Science
Tietokannassa oleva lehden nimi: Theoretical Computer Science
Vuosikerta: 806
Aloitussivu: 156
Lopetussivu: 170
Sivujen määrä: 15
ISSN: 0304-3975
eISSN: 1879-2294
DOI: https://doi.org/10.1016/j.tcs.2019.02.013
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/39862945
Resolving sets are designed to locate an object in a network by measuring the distances to the object. However, if there are more than one object present in the network, this can lead to wrong conclusions. To overcome this problem, we introduce the concept of solid-resolving sets. In this paper, we study the structure and constructions of solid-resolving sets. In particular, we classify the forced vertices with respect to a solid-resolving set. We also give bounds on the solid-metric dimension utilizing concepts like the Dilworth number, the boundary of a graph, and locating-dominating sets. It is also shown that deciding whether there exists a solid-resolving set with a certain number of elements is an NP-complete problem.
Ladattava julkaisu This is an electronic reprint of the original article. |