A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

The solid-metric dimension




TekijätHakanen Anni, Junnila Ville, Laihonen Tero

KustantajaElsevier B.V.

Julkaisuvuosi2020

JournalTheoretical Computer Science

Tietokannassa oleva lehden nimiTheoretical Computer Science

Vuosikerta806

Aloitussivu156

Lopetussivu170

Sivujen määrä15

ISSN0304-3975

eISSN1879-2294

DOIhttps://doi.org/10.1016/j.tcs.2019.02.013

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/39862945


Tiivistelmä

Resolving sets are designed to locate an object in a network by measuring the distances to the object. However, if there are more than one object present in the network, this can lead to wrong conclusions. To overcome this problem, we introduce the concept of solid-resolving sets. In this paper, we study the structure and constructions of solid-resolving sets. In particular, we classify the forced vertices with respect to a solid-resolving set. We also give bounds on the solid-metric dimension utilizing concepts like the Dilworth number, the boundary of a graph, and locating-dominating sets. It is also shown that deciding whether there exists a solid-resolving set with a certain number of elements is an NP-complete problem.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:21