A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Automatic sequences based on Parry or Bertrand numeration systems




TekijätMassuir Adeline, Peltomäki Jarkko, Rigo Michel

KustantajaElsevier

Julkaisuvuosi2019

JournalAdvances in Applied Mathematics

Vuosikerta108

Aloitussivu11

Lopetussivu30

Sivujen määrä20

ISSN0196-8858

DOIhttps://doi.org/10.1016/j.aam.2019.03.003

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/39751857


Tiivistelmä

We study the factor complexity and closure properties of automatic
sequences based on Parry or Bertrand numeration systems. These automatic
sequences can be viewed as generalizations of the more typical $k$-automatic sequences and Pisot-automatic sequences. We show that, like $k$-automatic
sequences, Parry-automatic sequences have sublinear factor complexity
while there exist Bertrand-automatic sequences with superlinear factor
complexity. We prove that the set of Parry-automatic sequences with
respect to a fixed Parry numeration system is not closed under taking
images by uniform substitutions or periodic deletion of letters. These
closure properties hold for $k$-automatic sequences and
Pisot-automatic sequences, so our result shows that these properties are
lost when generalizing to Parry numeration systems and beyond.
Moreover, we show that a multidimensional sequence is $U$-automatic with respect to a positional numeration system $U$ with regular language of numeration if and only if its $U$-kernel is finite.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:29