A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

On the Complexity of Hmelevskii's Theorem and Satisfiability of Three Unknown Equations




TekijätSaarela Aleksi

ToimittajaVolker Diekert, Dirk Nowotka

Konferenssin vakiintunut nimiInternational Conference on Developments in Language Theory

Julkaisuvuosi2009

JournalLecture Notes in Computer Science

Kokoomateoksen nimiDevelopments in Language Theory

Tietokannassa oleva lehden nimiDEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS

Lehden akronyymiLECT NOTES COMPUT SC

Sarjan nimiLecture Notes in Computer Science

Vuosikerta5583

Aloitussivu443

Lopetussivu453

Sivujen määrä11

ISBN978-3-642-02736-9

eISBN978-3-642-02737-6

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-642-02737-6_36


Tiivistelmä
We analyze Hmelevskii's theorem, which states that the general solutions of constant-free equations on three unknowns are expressible by a finite collection of formulas of word and numerical parameters. We prove that the size of the finite representation is bounded by an exponential function on the size of the equation. We also prove that the shortest nontrivial solution of the equation, if it exists, is exponential, and that its existence can be solved in nondeterministic polynomial time.


Research Areas


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:24