Boundary Regularity under Generalized Growth Conditions




Harjulehto P, Hästö P

PublisherEUROPEAN MATHEMATICAL SOC

2019

Zeitschrift für Analysis und ihre Anwendungen

ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN

Z ANAL ANWEND

38

1

73

96

24

0232-2064

1661-4534

DOIhttps://doi.org/10.4171/ZAA/1628



We study the Dirichlet phi-energy integral with Sobolev boundary values. The function phi has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.



Last updated on 2024-26-11 at 13:50