A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Boundary Regularity under Generalized Growth Conditions
Tekijät: Harjulehto P, Hästö P
Kustantaja: EUROPEAN MATHEMATICAL SOC
Julkaisuvuosi: 2019
Journal: Zeitschrift für Analysis und ihre Anwendungen
Tietokannassa oleva lehden nimi: ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN
Lehden akronyymi: Z ANAL ANWEND
Vuosikerta: 38
Numero: 1
Aloitussivu: 73
Lopetussivu: 96
Sivujen määrä: 24
ISSN: 0232-2064
eISSN: 1661-4534
DOI: https://doi.org/10.4171/ZAA/1628
Tiivistelmä
We study the Dirichlet phi-energy integral with Sobolev boundary values. The function phi has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.
We study the Dirichlet phi-energy integral with Sobolev boundary values. The function phi has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.