A1 Refereed original research article in a scientific journal
Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta
Authors: Anaïs Bardyn, Donia Baklouti, Hervé Cottin, Nicolas Fray, Christelle Briois, John Paquette, Oliver Stenzel, Cécile Engrand, Henning Fischer, Klaus Hornung, Robin Isnard, Yves Langevin, Harry Lehto, Léna Le Roy, Nicolas Ligier, Sihane Merouane, Paola Modica, François-Régis Orthous-Daunay, Jouni Rynö, Rita Schulz, Johan Silén, Laurent Thirkell, Kurt Varmuza, Boris Zaprudin, Jochen Kissel, Martin Hilchenbach
Publication year: 2017
Journal: Monthly Notices of the Royal Astronomical Society
Volume: 469
Issue: Supplement: 2
First page : S712
Last page: S722
Number of pages: 11
ISSN: 0035-8711
eISSN: 1365-2966
DOI: https://doi.org/10.1093/mnras/stx2640
Web address : https://academic.oup.com/mnras/article/469/Suppl_2/S712/4670835
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/38995976
Cometary ices are rich in CO2, CO and organic volatile
compounds, but the carbon content of cometary dust was only measured for
the Oort Cloud comet 1P/Halley, during its flyby in 1986. The COmetary
Secondary Ion Mass Analyzer (COSIMA)/Rosetta mass spectrometer
analysed dust particles with sizes ranging from 50 to 1000 μm, collected
over 2 yr, from 67P/Churyumov-Gerasimenko (67P), a Jupiter family
comet. Here, we report 67P dust composition focusing on the elements C
and O. It has a high carbon content (atomic |${\rm{C}}/{\rm{Si}} = 5.5{\rm{\ }}_{ - 1.2}^{ + 1.4}\ \ {\rm{on\ average}}$ |)
close to the solar value and comparable to the 1P/Halley data. From
COSIMA measurements, we conclude that 67P particles are made of nearly
50 per cent organic matter in mass, mixed with mineral phases that are
mostly anhydrous. The whole composition, rich in carbon and non-hydrated
minerals, points to a primitive matter that likely preserved its
initial characteristics since the comet accretion in the outer regions
of the protoplanetary disc.
Downloadable publication This is an electronic reprint of the original article. |