A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Conservation Laws and Invariant Measures in Surjective Cellular Automata




TekijätKari J, Taati S

ToimittajaNazim Fatès, Eric Goles, Alejandro Maass, Iván Rapaport

KustantajaDISCRETE MATHEMATICS THEORETICAL COMPUTER SCIENCE

Julkaisuvuosi2012

JournalDiscrete Mathematics and Theoretical Computer Science

Kokoomateoksen nimiAutomata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems

Tietokannassa oleva lehden nimiDISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE

Lehden akronyymiDISCRETE MATH THEOR

Sarjan nimiDiscrete Mathematics and Theoretical Computer Science

Aloitussivu113

Lopetussivu122

Sivujen määrä10

ISSN1462-7264

Verkko-osoitehttps://inria.hal.science/hal-00654706


Tiivistelmä
We discuss a close link between two seemingly different topics studied in the cellular automata literature: additive conservation laws and invariant probability measures. We provide an elementary proof of a simple correspondence between invariant full-support Bernoulli measures and interaction-free conserved quantities in the case of one-dimensional surjective cellular automata. We also discuss a generalization of this fact to Markov measures and higher-range conservation laws in arbitrary dimension. As a corollary, we show that the uniform Bernoulli measure is the only shift-invariant, full-support Markov measure that is invariant under a strongly transitive cellular automaton.



Last updated on 2024-26-11 at 16:18