A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Lipschitz constants and quadruple symmetrization by Möbius transformations
Tekijät: Rainio Oona, Vuorinen Matti
Kustantaja: Springer International Publishing
Julkaisuvuosi: 2024
Journal: Complex Analysis and its Synergies
Tietokannassa oleva lehden nimi: Complex Analysis and its Synergies
Artikkelin numero: 8
Vuosikerta: 10
Numero: 2
eISSN: 2197-120X
DOI: https://doi.org/10.1007/s40627-024-00136-y
Verkko-osoite: https://doi.org/10.1007/s40627-024-00136-y
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/387700827
Due to the invariance properties of cross-ratio, Möbius transformations are often used to map a set of points or other geometric object into a symmetric position to simplify a problem studied. However, when the points are mapped under a Möbius transformation, the distortion of the Euclidean geometry is rarely considered. Here, we identify several cases where the distortion caused by this symmetrization can be measured in terms of the Lipschitz constant of the Möbius transformation in the Euclidean or the chordal metric.
Ladattava julkaisu This is an electronic reprint of the original article. |